The generator matrix 1 0 1 1 1 1 1 1 2X^2 1 0 1 1 1 X^2 1 1 2X^2+X 1 1 X^2+2X 1 1 1 1 1 1 1 2X^2+X 2X 1 1 1 X^2+2X 1 1 1 1 1 1 1 1 2X 1 1 1 2X X^2+X 1 1 1 X 1 2X^2 1 1 1 1 1 1 1 2X^2+X 1 X^2+2X 1 1 1 X^2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2X^2 1 1 1 1 1 1 2X 1 1 1 1 1 0 1 1 2 2X^2 2X^2+2 0 2X^2+1 1 2 1 2X^2+2X+1 2X^2+X+1 2X^2+2 1 2X^2 X+2 1 2X^2 2X+2 1 1 2X^2+1 0 2X+1 X+1 2X^2+X+2 2X^2+2X+2 1 1 X 2X^2+2X+1 2X^2+X+2 1 2X^2+2X X+1 X 2X^2+2X 2X^2+X+1 X^2+2X+2 2X^2+X X+2 1 2X X^2+2X+2 2X^2+X+1 1 1 2X 2X X^2+2X+1 1 X^2+2X+2 1 X^2+2 X+1 2X^2+2X 2X^2+X 2X^2+2X+1 2X^2+2 2X+2 1 X+2 1 X^2+X 2X+1 1 1 X^2+X+2 2X+2 2X^2+X 2X^2+1 2X^2+1 2X^2+X+1 X+1 1 2X^2+X+1 X^2+1 2X^2+1 2X^2+X+2 2X+1 1 1 X+2 X^2+2X+2 X^2+X+1 X^2+2 X^2+2 0 1 2X^2+2X X 2X^2+X X^2+2X+1 2X+2 0 0 2X X^2 X^2+X 2X^2+X X^2+2X 2X^2+2X X X^2+2X X^2+2X 2X^2 X^2+X 2X^2 X^2+X X^2 X 2X X X^2+2X X^2 2X^2+X 0 2X X^2+X 0 2X^2+2X X 0 X^2+2X X 2X X^2 X^2+X X^2+X 2X^2+2X 2X^2 X^2+2X 2X^2 2X^2+X 2X 0 2X^2 2X^2 2X^2+2X 2X^2+X 2X X X^2 2X 2X^2+X X^2+X 0 2X 2X^2+2X X^2 X X^2+X 0 0 2X^2+X X^2+2X 2X^2 X X^2+2X X^2 X^2+X 0 X^2+2X X^2 0 2X 2X^2 X^2+2X 2X X^2 2X^2+2X 2X^2+2X X X^2+X X X^2 2X^2+X X^2+2X 2X^2 2X^2+X 2X X^2+X 2X^2+X 0 2X^2+2X 2X^2+X X^2+2X X X^2+X generates a code of length 95 over Z3[X]/(X^3) who´s minimum homogenous weight is 185. Homogenous weight enumerator: w(x)=1x^0+606x^185+924x^186+252x^187+1146x^188+718x^189+192x^190+636x^191+480x^192+156x^193+450x^194+348x^195+48x^196+378x^197+182x^198+24x^200+2x^201+8x^210+6x^213+2x^219+2x^225 The gray image is a linear code over GF(3) with n=855, k=8 and d=555. This code was found by Heurico 1.16 in 11.5 seconds.